

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Maternal Serum Alpha-Fetoprotein Screening In High-Risk Patients And Pregnancy Outcome.

A Geetha^{1*}, and TA Arunadevi².

¹Associate professor, Department of Obstetrics & Gynecology, Government Kilpauk Medical College, Chennai, Tamil Nadu, India.

²Associate professor, Department of Obstetrics & Gynecology, Government Medical College, Tiruppur Medical College, Tiruppur, Tamil Nadu, India.

ABSTRACT

Alpha-fetoprotein (AFP) is the major serum protein in the embryonic stage and the early fetal stage. Maternal serum alpha-fetoprotein (AFP) levels during the first and or second trimester of pregnancy are altered in pregnancies with aneuploidy, neural tube defects, and adverse pregnancy outcomes, including fetal death, pre-eclampsia (PE), fetal growth restriction, and preterm birth this study aimed to measure maternal serum AFP levels in second trimester between 15-20 weeks of gestation and to determine whether unexplained elevated MSAFP levels is an effective predictor of adverse pregnancy outcome among Indian population. This study was a prospective observational study, carried out on 75 pregnant women. Maternal serum alpha-fetoprotein (MSAFP) was measured between 15 and 20 weeks of gestation after excluding congenital malformation or birth defects. MSAFP level was determined by using the radio-immunoassay technique. Women with MSAFP levels>2.0 MoM were considered abnormal while MSAFP levels \leq 2.0 MoM were considered normal. All women were followed up till delivery and pregnancy outcomes were noted and compared between the two groups. Women with elevated MSAFP had significantly higher adverse pregnancy outcomes (75.4%) compared to women with MSAFP ≤ 2.0 MoM (26.1%) (p<0.0001 with the relative risk of 2.89,95% confidence interval 2.276 - 3.667). Unexplained elevated MSAFP has high sensitivity, specificity, positive predictive value, and negative predictive value in predicting adverse pregnancy outcomes. It would, therefore be worthwhile screening pregnant women in the second trimester for maternal serum alpha-fetoprotein levels as it would help to identify high-risk pregnancies and allow close antenatal surveillance for better pregnancy outcomes. Keywords: Maternal serum alpha-fetoprotein, Maternal and fetal outcome, Pregnancy

https://doi.org/10.33887/rjpbcs/2024.15.1.56

*Corresponding author

2024

INTRODUCTION

Congenital abnormalities have a major impact on neonatal morbidity/mortality as well as a heavy emotional burden on the family. Identifying them prenatally is an essential task of the obstetrician, who is involved in the care of the pregnant women [1]. Prenatal diagnosis is the art and science of identifying structural and functional abnormalities which includes screening methods and definitive diagnostic procedures. Screening identifies individuals whose risk is high enough that they could benefit from further evaluation [2]. Screening methods include assessment of serum markers like AFP, hCG, UE₃, inhibin A, PAPP-A, and USG assessment of congenital anomalies [3]. Definitive diagnostic procedures include amniocentesis, CVS, fetal blood sampling, and Preimplantation genetic diagnosis which allows analysis of embryonal and fetal cells or tissues for chromosomal, genetic, and biochemical abnormalities. Maternal serum alpha-fetoprotein is a simple and cost-effective screening method. [4]. Though, initially discovered to identify neural tube defects three decades ago, studies have documented that the values of MSAFP estimation extend well beyond the detection of NTD in the fetus [5]. Abnormally elevated and low levels of MSAFP are an indication of high-risk pregnancy and sub- optimal outcome of the pregnancy.[6] Before screening, the patients should receive counseling which includes the purpose of the tests, the risks involved, the limitations of the screening tests, and the patient's options.[7]

MATERIALS AND METHODS

In this study, we enrolled a total of 75 women in the year 2022-2023 at, the Department of Obstetrics & Gynecology, Government Kilpauk Medical College, Chennai, Tamil Nadu, India. The study group comprised 75 cases of pregnant patients at GA 15 to 22 weeks who attended our antenatal OPD with any one of the following high-risk factors

- Age above 35 years
- Previous H/O early pregnancy loss
- Previous H/O congenital anomalies
- Previous H/O neural tube defects
- Previous H/O baby with Down Syndrome
- Family H/O congenital anomalies/ chromosomal disorder
- Known epileptic patient on treatment
- Anemia complicating pregnancy
- Fetuses exposed to any teratogen.

Most of the patients had regular menstrual cycles, were not on any oral contraceptives and they knew their LMP correctly. For patients with irregular cycles/ unreliable dates, gestational age was determined by a dating scan. A detailed workup of each patient was carried out according to a well-designed proforma. A detailed history was taken and a thorough physical examination was performed. Routine investigations included Hb, urine analysis, Blood Grouping/ Typing, and VDRL. For the subjects in the study group, blood 3cc was collected by the venipuncture in a sterile test tube and sent to the laboratory where MSAFP measurement was done. The blood was allowed to clot and the serum was separated by centrifugation at room temperature and stored in -20°C deep freezer.

RESULTS

The study group consisted of 75 patients at GA 15 to 22 weeks who had any of the risk factors cited above. MSAFP screening was done for these patients and the value of MSAFP was converted from ng/ml to MOM by dividing the patient's value with the mean value for the particular GA. Values above 2.5 MOM were considered elevated and < 0.5 MOM were considered low. All patients were followed till delivery and the pregnancy outcome was noted The relation between abnormal MSAFP value and adverse pregnancy outcome was correlated.

Table 1: Distribution of Age Group

Age	Number of patients	Percentage	
16-20	4	5.33%	
20-25	45	60%	
26-30	16	21.33%	
31-35	8	10.66%	
> 35	2	2.66%	
Observation	60 % of the patients lie in the 20-25 age group		

Table 2: Distribution of Gravidity

Gravidity	Number	Percentage	
Primi	14	18.66%	
G2	28	37.33%	
G3	18	24%	
G4	9	12%	
G5	6	8%	
Observation	Most of the patients are second gravida		

Table 3: Distribution of Patients according to Gestational Age (GA)

GA	Number	Percentage	
15	9	12%	
16	12	16%	
17	9	12%	
18	7	9.33%	
19	6	8%	
20	11	14.66%	
21	3	4%	
22	18	24%	
Observation	Most of the patients screened were at 22 weeks, though the screening was done between 15 to 22		
	weeks		

Table 4: Gravidity Distribution According to Age

Gravidity	Age						
	16-20	16-20 21-25 26-30 31-35 >35					
1	9	3	1	2	0		
2	2	14	5	1	1		
3	1	12	5	4	0		
4	0	7	1	0	1		
>=5	0	1	3	2	0		

Table 5: Laboratory Standard Value of MSAFP for Each Week of Gestation in MOM

GA (eeks)	Median value of MSAFP	Multiple of Median		
		2.5	0.5	
15	11	27.5	5.5	
16	14	35	7	
17	20	50	10	
18	27	67.5	13.5	
19	35	87.5	17.5	
20	42	105	21	
21	50	125	25	
22	60	150	30	
		This table shows the median according to gestational age. This standardized mean was followed in the study.		

January – February

GA	Total Number of	Number of Patients	Percentage
	Patients	with Elevated MSAFP	
15	9	5	55.55%
16	12	4	33.33%
17	9	2	22.22%
18	7	4	57.14%
19	6	3	50%
20	11	5	45.45%
21	3	0	0
22	18	5	27.77%
Observation	Out of the study group, 37.33% showed elevated MSAFP value. 57.14% in the 18		
	weeks gestation showed elevated MSAFP levels.		

Table 6: No of cases showing elevated MSAFP level according togestational age(Total Number of Cases - 75)

Table 7: Patients according to high-risk factor

High Risk Factors	Number	Percentage
ВОН	26	34.66%
Hypertension / BOH	5	6.66%
Known epileptic / BOH	2	2.66%
BOH/ Anemia	1	1.33%
Hypertension complicationpregnancy	3	4%
Positive family history of Hypertension	2	2.66%
Anemia / Hypertension	2	2.66%
Anemia	6	8%
Anemia / previous history ofanomalous	1	1.33%
baby		
Anemia / Positive family H/O	1	1.33%
Known epileptic on treatment	3	4%
Known epileptic on treatment / positive	1	1.33%
familyhistory		
Fever	3	4%
Previous history of anomalousbaby	6	8%
Drug intake	5	6.66%
Positive family history	6	8%
Elderly Gravida	2	2.66%
Observation	The maximum number of cases screened waswith history of BOH- 34.66%	

Table 8: Causes of Elevated MSAFP

Causes	Number of Cases	Percentage
Anomalies	3	10.71%
Early pregnancyloss	2	7.14%
IUD	2	7.14%
Preterm	7	25%
IUGR	1	3.57%
LBW	5	17.85%
Neonatal complications	3	10.71%
Normal	5	17.85%

Table 9: Type Of Congenital Anomalies In Elevated Msafp

Total no of congenital anomalies	- 3
CNS anomalies	- 2
Other anomalies	- 1

Sl. No	Anomaly	Number
1	Anencephaly	1
2	Spina Bifida	1
3	Exomphalos	1

Table 10: Association of Elevated MSAFP Level and CongenitalAnomalies

		MSAFP			
	Normal Elevated Low				
Diagnosis	(≥ 2.5 MOM) (≤ 0.5 MOM)				
CongenitalAnomalies	Nil 3 Nil				
Observation	1. MSAFP levels are elevated in all the 3 cases of pregnancies with anomalous				
	babies.				

- Among the study group, 3 (4%) had congenital anomalies.
- Among the congenital anomalies, 100% had elevated MSAFP
- 10.71% of patients with elevated MSAFP had congenital anomalies.

Table 11: Association of MSAFP Level and Preterm deliveries

	Number of	MSAFP		
Diagnosis	cases	Normal	Elevated (2.5 MOM)	Low (0.5 MOM)
Preterm deliveries	8	1	7	Nil
	1. Among the study group, 8(10.66%) went into preterm labor.			
	2. Out of 8 cases 7 had elevated MSAFP (87.5%)			
Observation	3. 1 patient had normal MSAFP (12.5%)			
	4. 25% of	patients with elevate	ed MSAFP levels had p	retermdeliveries.

Table 12: Association of MSAFP level and IUGR

	Number of MS.		MSAFP	AFP		
Diagnosis	cases	Normal	Elevated (2.5 MOM)	Low (0.5 MOM)		
IMAGE	1	Nil	1	Nil		
Observation	 Among the study group, 1(1.33%) had IUGR. Hence 100% of patients with IUGR had elevated MSAFP. 3.75% of patients with elevated MSAFP had IUGR. 					

Table 13: Association of MSAFP Level and LBW

Diagnosis	Number of	MSAFP		
	cases	Normal	Elevated (2.5 MOM)	Low (0.5 MOM)
LBW excluding preterm	5	2	3	Nil
Observation	 Among the study group, 5(6.66%) had LBW. Among the LBW 60% had elevated MSAFP. 40% had normal MSAFP. 10.71% of patients with elevated MSAFP had LBW. 			

Diagnosis	Number of	MSAFP		
	cases	Normal	Elevated (2.5 MOM)	Low (0.5 MOM)
Incompleteabortion	2	1	1	Nil
Completeabortion	1	Nil	1	Nil
	 Among the study group, 3 (4%) had early pregnancy loss 66.66% had elevated MSAFP 			
Observation	3. 33.33%	33.33% had normal MSAFP 7.14% of patients with elevated MSAFP had earlypregnancy loss		

Table 14: Association of Early Pregnancy Loss and MSAFP

Table15: Fetal outcome in the study group (75 Patients)

			MSAFP Level					
Diagnosis	Diagnosis Nu		No	rmal	Elev	ated	Lov	w
	No	Percentage	No	%	No	%	No	%
Still Birth	2	2.66%	-	-	-	-	-	-
Fresh	1	1.33%	-	-	1	100	-	-
Macerated	1	1.33%	-	-	1	100	-	-
Neonatal death	1	1.33 %	1	100	-	-	-	-
Anomalies	3	4%	-	-	3	100	-	-
CNS	2	2.66%	-	-	2	100	-	-
Omphalocele	1	1.33%	-	-	1	100	-	-
Neonatal complications	3	4%	-	-	3	100	-	-

This study shows 2.66% of stillbirths in the study group. All of them showed elevated MSAFP levels. One of the stillbirths is a macerated IUD, delivered at 7 months by amother who had previous four abortions. The other stillbirth is a fresh IUD delivered at 6 months, by a mother who was a case of severe PIH. One neonatal death occurred but the mother had normal MSAFP value. The baby died of respiratory distress 2 days after delivery. An autopsy was not done as the parents were not willing to subject the baby to autopsy.4% of the study group had anomalous babies out of which 66.66% had CNS anomalies (anencephaly and Spina Bifida) and 33.33% had ventral wall defect (exomphalos). Among the study group, 4% had neonatal complications and all had elevated MSAFP

Table 16: Pregnancy outcome in the study group of 75 patients

Outcome	Number	Percentage
Early Pregnancy Loss	3	4%
Congenital Anomalies	3	4%
IUD	2	2.66%
Preterm	8	10.66%
IMAGE	1	1.33%
LBW	6	8%
Neonatal Complications	3	4%
Neonatal Death	1	1.33%
Normal	48	64%

Table17: Adverse pregnancy outcome in patients with normalMSAFP includes

LBW	1	2.17%
Preterm	1	2.17%
Incomplete abortion	1	2.17%
Neonatal death	1	2.17%

15(1)

Table 18: Relation of MSAFP Value and Pregnancy outcome

MSAFP	Adverse PregnancyOutcome	Normal PregnancyOutcome	
Abnormal MSAFP	23	6	
Normal MSAFP	4	42	

29 patients had abnormal MSAFP values out of which 28 patients had elevated MSAFP with an adverse pregnancy outcome in 23 cases and 1 patient had a low MSAFP but she had a normal pregnancy outcome.46 patients had normal MSAFP with an adverse pregnancy outcome in 4 cases. Sensitivity= 85.18%,Specificity = 87.5%,Positive predictive value = 79.3% Negative predictive value = 91.3%.

DISCUSSION

Maternal serum alpha-fetoprotein (AFP) levels during the first and or second trimester of pregnancy are altered in pregnancies with aneuploidy, neural tube defects, and adverse pregnancy outcomes, including fetal death, pre-eclampsia (PE), fetal growth restriction, and preterm birth [8]. We have proposed that the best approach to screening for PE is to use Bayes' theorem to combine the *a*priori risk from maternal characteristics and medical history with the measurement of biomarkers. Our approach assumes that, if the pregnancy was to continue indefinitely, all women would develop PE and whether they do so or not before a specified gestational age depends on competition between delivery before or after development of PE [9]. The effect of maternal factors and biomarkers is to modify the mean of the distribution of gestational age at delivery with PE so that, in pregnancies at low risk of PE, the gestational age distribution is shifted to the right with the implication that in most pregnancies delivery will occur before development of PE [10]. In high-risk pregnancies, the distribution is shifted to the left, and the smaller the mean gestational age the higher the risk of PE. Maternal serum alpha-fetoprotein (AFP) levels during the first and or second trimester of pregnancy are altered in pregnancies with aneuploidy, neural tube defects, and adverse pregnancy outcomes, including fetal death, pre-eclampsia (PE), fetal growth restriction, and preterm birth [11]. We have proposed that the best approach to screening for PE is to use Bayes' theorem to combine the *a-priori* risk from maternal characteristics and medical history with the measurement of biomarkers [12]. Our approach assumes that, if the pregnancy was to continue indefinitely, all women would develop PE and whether they do so or not before a specified gestational age depends on competition between delivery before or after development of PE [13]. The effect of maternal factors and biomarkers is to modify the mean of the distribution of gestational age at delivery with PE so that, in pregnancies at low risk of PE, the gestational age distribution is shifted to the right with the implication that in most pregnancies' delivery will occur before development of PE [14]. In high-risk pregnancies, the distribution is shifted to the left, and the smaller the mean gestational age the higher the risk of PE. The rate of preterm delivery in pregnancies with MSAFP level > 2 MOM was 18% compared to 7% when MSAFP level is \leq 2.0 MOM (p = 0.005) with an odds ratio of 2.9(95% CI-1.3 to 6.4) [15]. The rate of preterm birth was significant. higher in women with high MSAFP (20% vs. 5.23%) with a relative risk of 3.822 (95% CI-1.467 to 9.959 [16]. In our study, sensitivity, specificity, PPV, and NPV of the test was 64.17%, 66.87%, 16.92%, and 94.78% respectively. In the present study, pre-eclampsia occurred in 20% of women in the group with elevated MSAFP (>2 MoM) compared to 6% of women in the group with MSAFP level ≤ 2 MoM [17]. the strong association between second-trimester elevated MSAFP levels and adverse pregnancy outcomes (preterm birth, preeclampsia, oligohydramnios, IUGR, placental-abruption, PPROM, IUFD, stillbirth, neonatal death) was found in our study (p-value <0.0001) [18-20].

CONCLUSION

Women with unexplained elevated Maternal Serum Alpha-Fetoprotein levels>2.0 MoM measured between 15 to 20 weeks of gestation do have an increased risk of adverse pregnancy outcome (both maternal and fetal) compared to women with MSAFP level \leq 2.0 MoM. The results are not only statistically, but also clinically significant and agree with most reports published so far. It would therefore be worthwhile screening pregnant women in the second trimester for maternal serum alpha-fetoprotein levels as it would help to identify high-risk pregnancies and allow close antenatal surveillance for a better pregnancy outcome. The present study shows unexplained elevated MSAFP level has high sensitivity, specificity, positive predictive value, and negative predictive value in predicting adverse pregnancy outcomes. Its measurement is easily accessible and safe. Further, it is found to be one of the

January – February

2024

RJPBCS

cost-effective and non-invasive screening methods. But till now no definitive follow-up and treatment plans have been practiced for high-risk women. So, we recommend educating women about the signs and symptoms of complications and besides biochemical screening undergo more frequent antenatal checkups and testing by other modalities.

REFERENCES

- [1] Albert Reece MD. Obstetrics and Gynaecology. Clinics of North America, 33 44, March 1997.
- [2] Fernando Arias. Practical Guide to High Risk Pregnancy and Delivery, 2nd edition, 33 39.
- [3] Haddow JE, Palomaki GE. Down Syndrome Screening. Lancet 1996;347: 1625.
- [4] Haddow JE, Palomaki GE, Williams J. Prenatal Screening for Down Syndrome with Use of Maternal Serum Markers. The New England Journal of Medicine 1992; 327: 5888.
- [5] Katz VL, Checheir NC, Cefalo RC. Unexplained Elevations of MSAFP. Obstetrics and Gynaecology Surgery 1990;45: 719.
- [6] Merkatz IR, Nitowsky HM, Macrin JN. An Association Between the Low MSAFP and Fetal Chromosome Abnormalities. American Journal of Obstetrics and Gynaecology 1984; 148:886–894.
- [7] Milunsky A, Alpert E. Results and Benefits of an MSAFP Screening Program", Journal of the American Medical Association 1984;252:1438 1442.
- [8] Milunsky A, Jack SS, Bruell CL. Predictive values, Relative Risks and Overall Benefits of High and Low MSAFP Screening in Singleton Pregnancies. American Journal of Obstetrics and Gynaecology 1989; 161 : 291.
- [9] Nelson LH, Bensen J, Burton BK. Outcome in patients with unusually high MSAFP levels. American Journal of Obstetrics and Gynaecology 1987;157:572-576.
- [10] Palomaki GE, Williams J, Haddow JE. The New England Regional Genetics Group Collaborative Study of Down Syndrome Screening. American Journal of Obstetrics and Gynaecology 1989;160 : 575 - 81.
- [11] Ramus R, Martin K. Elevated MSAFP and Placenta Sonolucencies. American Journal of Obstetrics And Gynaecology 1996;174: 423.
- [12] Shanti Yadav et al. Pregnancy outcome in relation to abnormally elevated and low levels of maternal serum alpha feto protein. Indian Journal of Obstetrics and Gynaecology 1993; 43(6).
- [13] Tyra Krause MD, Peter Christens. Second Trimester MSAFP and Risk of adverse pregnancy outcome. Obstetrics and Gynaecology 2001;97:2.
- [14] UK collaborative study on AFP in relation to NTD. MSAFP Measurement in Antenatal Screening of Anencephaly and Spina bifida in Early Pregnancy. Lancet 1 9 7 7 ; 1: 1323.
- [15] VK Singh, MK Sharma. MSAFP levels in normal pregnancy and various types of abortions. The Journal of Obstetrics and Gynaecology of India 1990;40(6).
- [16] Vinita Das et al. MSAFP levels and abortion. The Journal of Obstetrics and Gynaecology of India 1992;42(2).
- [17] Wald N, Cuckle H, Stirrat GM, Benett MJ. MSAFP and low birth weight. Lancet 1977;2:268-70.
- [18] Yaron Y, Cherry M, Kramer RL, O'Brien JE, HallakM, Johnson MP, et al. Am J Obstet Gynecol 1999;181(4):968-74.
- [19] Ozturk H, Erkaya S, Altınbaş S, Karadağ B, Tonyalı NV, Ozkan D. J Turk Soc Obstet Gynecol 2014;3:142-7.
- [20] Boyd P, and Keeling J. Prenatal Diagnosis 1986;6:369-73.